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Exactly solvable three-dimensional lattice model with attractive and repulsive interactions
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Systems of particles interacting in a lattice are considered; the number of particles at each site is not limited.
The model with attraction of particles located at different sites and repulsion of particles, which occupy the
same site was discussed in the paper by Belotskii and[Phys. Lett.147, 13 (1990]. In an exactly solved
model with repulsion at different sites and attraction at the same site is proposed. In this Rapid Communica-
tion, exact expressions for the partition function of the system are derived for both cases; the equation of state
is obtained for the continuum limiting cag&1063-651X98)50309-1

PACS numbsd(s): 02.50-r, 36.40-c

A few model systems of interacting particles are known inapproach, and »>=+1. The upper sign corresponds to the
statistical physicg1] for which exact solutions have been model with attraction at different sites and repulsion at the
found for the thermodynamic limit. For the most realistic same site, the lower one is associated with the contrary
Ising model, the solution is obtained only for one and twosituation—repulsion at different sites and attraction at the
dimensions. To find exact solutions for the three-dimensionasame site of the initial lattice. The quantiti¥,y ,Ug de-
models is a more complicated problem, though predictionscribe the spatial dependences of relevant interaction poten-
based on the universality principles are confirmed experitials. It should be noted that the effective Hamiltonian of the
mentally [1-3]. For the time being, no exact solution has Gauss model of spin behavior in fractffd can be reduced
been found for the three-dimensional models with shortto the form(1).
range forces. If4], a three-dimensional lattice model was  The partition function of the system with a fixed number
proposed, for which the partition function was presented irof particlesN==.n, may be described by the expression
terms of known functions and an exact solution was found in
this sense. This model deals with a system of particles inter- _
acting in a lattice with an unlimited number of particles at ZN_{nZS} exp{uN(n)+H(n)}5
each site. The partition function was calculated and lattice
effect on thermodynamic parameters of the system was con- 1
sidered for the case where particles from different sites at- :{;} exp[ z (n=egnst E”ZSES, Wss Nehs
tract and particles from the same site repel. ® '

In this paper, another exactly solvable three-dimensional 1, 5
model of a system of particles interacting in a lattice is pro- 5V > ugnzf, 3]
posed. As before, the model is based on the assumption that S

the number of particles at each site is not limited. Particles L . e
from different sites are repelled, particles from the same sitg\/he.rez{”s.} implies summatlon. over all probgble dlfs,tnbunon
are attracted. The approach [df to the construction of the ~configurations of the occupation numbens,is the inverse
generating partition function makes it possible to considefémperature, ang is the chemical potential.
the two model systems with opposite interaction mechanisms |n order to calculate the partition function, we employ the
in a unified manner, and to calculate the partition function. Inknown results of the theory of Gauss integris7], i.e.,
the continuum limiting case, the equation of state can be
derived and phase transition conditions can be discussed. exp{ivzz W.on.n ,]
. . . . . sg'llslls
Let us consider a model system of interacting particles in

a lattice with the microstates described by a set of site occu- o

ation numbersg. The configuration Hamiltonian of a sys- 1
Fem with the two above-mentioned opposite interaction types - f Do exp{ VES: PsNs™ > 2, Wss 505 1
can be written in a unique way, i.e., >

s,s’

®
1

1
H(n)=2> ene— 5 12>, Wegngng + EVZE Ugn2, whereD ¢=BIlde; the normalization factoB has no ef-
s s’ : fect on the thermodynamic properti@4’ + is the inverse of
(1) y 7p p s¢
the interaction matriﬁsffwsgl,wsﬁs;assl. Substituting(3)
whereeg is the additive part of particle energy at the ste in (2), we reduce the calculation of the partition function to
(which plays the role of the external field in the generalthe quantum field theory procedure with respect to the intro-
duced auxiliary field8,9]. This approach provides a deriva-
tion of the partition function even for the case of spatially
*Electronic address: lev@elphys.carrier.kiev.ua inhomogeneous particle distributid8].
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In this paper, however, we obtain the partition function in a somewhat different way. We introduce the generating func-

tional which, within the context of3), is given by

B. l. LEV

1 -
f D¢ exp[ - ﬁ Es,s’Wss}qpsQDs’

PRE 58

1
E{ns}expl’ S pu—estvegng— > 1’3 U Snﬁ]

—_ Zn(p,es)

E(p)= —= @

Z(eo) 1 . 1, ,

Do exp — ﬁ 255 Wsg @505 Z{ns}ex Zo(ves—Pes)ns— Pid 2Ugng

|
The physical meaning of the generating functional is ob- 0 .
vious from the definition, since it is described by the ratio of £9-Us> W, £ Bes=0. (10
S!

the partition function with a fixed number of particles to the
partition function of the grand canonical ensemble. Now we

substituteps= s+ 2 andng=mg+ v (e2+ Bu)/ BUg] in

the denominator of4), then the generating functional re-

Then the partition function of the grand canonical distri-
bution of the system reduces to the form

duces to Z(gs)=H(egs)Z(0), 11
0 2
_ ot v Bu where
E(u)=exp 2 (n=28) =55 — (5)
. S E(ss>=exp{2 i(ﬁss—é’)], (12)
under the condition thapg satisfies the equation s 2Us
_ and
QDS—USES W5 oo + v2Bu=0. (6)
1
2(0)=f Do expl — =— >, W_towog !>,
The shift of the field variable and the equation obtained 25 TG
serve to select the states that bring the dominant contribution 1
in the partition function of the system. Having found the : ) 2
solution of Eq.(6), we can write the generating functional X exp fogkst 27 BUks (13

and thus obtain all relevant thermodynamic characteristics of
the system. The chemical potential is determined by thé&lescribes the configuration partition function of the system

equation
10InZy(m,es) 1aInE(w)
N: N = — = — , 7
(N)=73 m 3 on ()
and the compressibility of the system is given by
ky= ()2 N)?—(N?
a2 |7 =(N)*—(N%)
1 &(N) 16°n E(n)

=~ n T F e ®

B du B

whereP is the pressure and is the volume of the system.
This becomes possible after the first step of the change
variables, which reduces the partition functidy(u,es)
=E(u)Z(es) to the product of two factors in which the
grand partition functiorZ(eg) may be written in the form

1
Z(Ss):f Dy exﬁ - ﬁ / W;s%(ﬂsws’] 2

{mg}
Xexp{ E (vsihs— Beg)Ms— %VzE Usmg] . (9

I

Now we again shift the variablesj= o<+ Vgg and
me=ke+ 17 (£2+ Beg)/ BU,], and require thag2 must be a
solution to the equation

with the external field not taken into account. It is not diffi-
cult to see that the last term in formula3) is the Riemann
O function doubly periodic with respect to the variables
—iod2m and (v2BU)/27. This function is tabulated for
the whole range of change of argumefit6]. Thus the con-
figuration partition function

1
2(0):f Do expl — — > W_jo.0y
285

i0g iVZ,BUS)

27’ 2w

X0

(14)

is written in terms of the well know® functions. Thus, the

artition function of the system is completely determined for
the solutions of Eqs(6) and (10). In this sense we can say
that this procedure provides an exact statistical solution for a
system of interacting particles described by the Hamiltonian
(1). For a system with unfixed number of particles, formula
(12) and explicit expressiond 2) and(14) yield the thermo-
dynamic characteristics of the system, i.e., the correlation
function and the susceptibility. We have

#In E(eg)
gss/ B

1
dedEy X= N_B szs’ Oss - (15
Thus we have a complete statistical description of the
system in terms of the know® functions and solutions of
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the relevant equations fopg and 52. Solutions of Eqs(6) This representation provides a possibility to obtain the
and (10) select the configuration states that bring the domi-equation of state for the continuum case, when interaction at
nant contribution to the partition function. To obtain the final different sites is Newton attraction or Coulomb repulsion and
result requires specifying the interactit,y andU,. We  interaction at the same site is constadd{=U =const. The
rewrite the generating functiondb) in a modified form passage to the continuum limiting case is carried out by re-
given by placing> = N/VfdV and rewriting the equations in the dif-
ferential form. The equation for the Green function in the

— continuous case is given b
:<m=exp{ > (u—285>ﬁufs}, (16) JVEn Y
U
where G0+ Zrz(Ar=KHGM=0(), (24
wherep=N/V is the density.
:U_s 1_2 Gss 17) For x>>(4mq?)/Up, the solution of this equation is
S given by
is written in terms of the Green functiddy of Eq. (5), i.e., o
G(r)=— ——exp(—Ar), (25)
1 ur
Gss—UsD W_yGgrg = s - (18)
s’ where \?=«?—[(47q?)/U]p. If the reversed inequality
This presentation reduces E@) for the chemical poten- holds, then
tial to RE
G(r)=—mcos(—)\r). (26)

NZZ (n—edfs. (19
s Substituting the Green function in the definiti¢h7) and

The compressibility of the system is described by the exmaklng use of the continuum analogue of &20),

pression
R N [ oV
NZ [oV) 2 f dRI(R)=—§ | g (27)
o= | )= 5 2 1 20
we find that for the first case,
So, in order to find the thermodynamic characteristics of
the system one just has to find the solution of @®) for the ap 12 p?
Green functionGgy . ﬁ) U {1+ —2] ) (28
The above treatment is based on the initial lattice model T Po

and has an exact solution for this case. It is not difficult to 5 a2 )
extend the approach to the continuum case. To do this, w¥here po=(\°UN?)/(47q?). The pressure increase over

cannot avoid calculating the inverse operaff . If the the lattice gas pressur®y=kTp is described, for
. . L - - >(47q°)/Up, by a simple expression
interaction energy is given bW,y =W(Rs—Rg/) (the val-

ues of subscrips form a continuous set within the volunve U p
of the systeny then the inverse matriW/__ should be inter- AP=P— Po:VTPoafCtafé% : (29)
preted in the operator seng&7], i.e.,
.. which for p/pg<<1 reduces to
W™ H(Rs—Rg)=rrLr (21)
whereL g is the operator; for each the interaction potential is AP= %p{ 1— 1 (ﬁ) 2] | 0
the Green function. For the shielded Coulomb or Newton 4 3 \po
interaction with
o If the reversed ir_1equa|ity<2<[(4q-rq2)/u_]p is_satisfie_d,
Wss’:R - exp{—K(F§5— ﬁsr)}, (22) then the pressure increase may be optam(_ed in the integral
s form. If the interaction at different lattice sites is constant

too, Wyy =W=const., we have
whereq is the interaction constant and ! the interaction **

radius
. AP=12(U—W)p, (31)
1
— _ .2
Lr= 47Tq7(AR ) (23 which provides a complete physical picture of the situation

under consideration. Equation of std&9) is not of van der
whereAp is the Laplace operator. Waals form; nevertheless, it allows a phase transition for
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kT.=—U/x? in the caser’=—1. The phase transition in knowing the distribution function, can be obtained even
the system with constant interaction energies occurs fowithout such calculations, due to the factorization of the par-
kT.=v?(U—-W). tition function. We emphasize that our choice of the interac-

In conclusion, we reduced the partition function of thetion and dimension 3 is dictated by the fact that the inverse
three-dimensional lattice system, with long range interactiorpperator has the forr23) that is essential to our approach
(22) and the short range interaction on sites, to the form thal? just three dimensions. However, since the potentials
can be calculated by conventional numerical methods. Fo}|R—R’|, —1/27 In|R—R’|, and —1[(n—2)|R—R’|"" 2]
instance, the distribution function of the particles can be obhave the same inverse operat@8) with «=0, respectively,
tained as a result of such calculations. However, the convenn 1,2n=3 dimensions, the method can also be applied to
tional thermodynamic characteristidgpressure, compress- the corresponding systems in dimensions different fiom
ibility, and so on and equation of state, which do not imply =3.
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